Тайс Хендрикс: Россия — всегда в моем сердце! (С. 53–55)

В ЦЕНТРЕ ВНИМАНИЯ: ФЕРМЕРСКАЯ ПТИЦА
УДК 636.5.034:636.083.3

ВЛИЯНИЕ ЦВЕТОВОЙ ТЕМПЕРАТУРЫ ИЗЛУЧЕНИЯ СВЕТОДИОДНЫХ СВЕТИЛЬНИКОВ НА ПРОДУКТИВНЫЕ КАЧЕСТВА КУР

Кавтарашвили А.Ш., заместитель директора по научной работе, д-р с.-х. наук
Новоторов Е.Н., ведущий научный сотрудник лаборатории технологии производства яиц, канд. с.-х. наук
ФГБНУ Федеральный научный центр «Всероссийский научно-исследовательский и технологический институт птицеводства» РАН (ФНЦ «ВНИТИП» РАН)

Гладин Д.В., технический директор ООО «Техноновет груп»

Аннотация: В статье представлены результаты влияния различных значений цветовой температуры излучения светодиодных светильников на продуктивные качества кур. Установлено, что при содержании яичных кур промышленного стада на фоне прерывистого освещения наилучшие результаты достигаются при цветовой температуре излучения в первый и последний периоды света 5000 К, а в средний период — 3000 К.

Abstract: The results for influence of different means of LED lamps radiation color temperature at layers productive qualities have been submitted in the paper. It has been determined that when keeping production layers at the phone of intermitted lighting the best results can be reached at color temperature 5000 К in the first and last lighting periods and 3000 К in middle period.

Ключевые слова: светодиодные светильники, цветовая температура излучения, куры, продуктивность, качество яиц, затраты корма.

Key Words: LED lamps, radiation color temperature, layers, production, egg quality, feed consumption.

Введение

Свет — один из важнейших элементов окружающей среды, оказывающий влияние на поведение, физиологическое состояние и жизнеспособность птицы [1, 2, 3, 4]. В интенсивном птицеводстве искусственное освещение используется как механизм, регулирующий рост, поведение и продуктивность птицы [5, 6, 7]. Следовательно, режим, интенсивность, спектр и источник освещения, а также цветовая температура излучения — это основные параметры используемого света в современном птицеводстве [8, 9, 10, 11].

Следует отметить, что эволюция живых организмов, в том числе и птицы, проходила под действием естественного света, цветовая температура которого меняется в зависимости от времени года, суток и состояния атмосферы.

По мнению различных источников освещения, таких как светодиоды, позволяет существенно изменить спектр и цветовую температуру излучения, используя один и те же светодиоды. Во многих литературных источниках показана зависимость продуктивности и качества яиц кур от спектра и цветовой температуры источника [12, 13, 14, 15].

Цель нашего исследования — изучить продуктивные качества кур, выращиваемых на промышленном стаде при различных значениях цветовой температуры излучения светодиодных светильников в условиях прерывистого освещения.

Материалы и методы исследований

Исследование проводили в вакцине селекционно-генетического центра «Заросское экспериментальное племенное хозяйство ВНИТИП» на курах промышленного стада яичного кросса «Шейвер». Для этого из 140-дневных курочек методом аналогов были сформированы четыре группы, по 100 голов в каждой. Птиц до 30-дневного возраста содержали в клеточных батареях КОЖ, по 5 гол. в клетке.

Схема эксперимента представлена в таблице 1.

<table>
<thead>
<tr>
<th>Группа</th>
<th>Схема освещения (С — свет, T — темнота, ч)</th>
<th>Включ. света, ч</th>
<th>Выкл. света, ч</th>
<th>Освещ. дк</th>
<th>Цветовая температура источника света, К</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>С, Т, С, Т, С, Т, С, Т</td>
<td>2</td>
<td>4</td>
<td>10</td>
<td>Все периоды света — 3000 К</td>
</tr>
<tr>
<td>2</td>
<td>С, Т, С, Т, С, Т, С, Т</td>
<td>9</td>
<td>12</td>
<td>10</td>
<td>Первый и последний периоды света — 3000 К, средний период света — 5000 К</td>
</tr>
<tr>
<td>3</td>
<td>С, Т, С, Т, С, Т, С, Т</td>
<td>14</td>
<td>17</td>
<td>10</td>
<td>Первый и последний периоды света — 5000 К, средний период света — 5000 К</td>
</tr>
<tr>
<td>4</td>
<td>С, Т, С, Т, С, Т, С, Т</td>
<td></td>
<td></td>
<td></td>
<td>Все периоды света — 5000 К</td>
</tr>
</tbody>
</table>

Результаты исследований и их обсуждение

Результаты исследований показали, что за продуктивный период сохранность поголовья в обоих группах была высокой и составила 99–100%, с незначительным отставанием опытной группы 2 (табл. 2).

Максимальная яйценоскость на начальную и среднюю несушку была отмечена в опытной группе 3, где цикловая температура измерения светодиодных светильников в первый и последний периоды света составляла 5000K, а средний период – 3000K, и находилась на уровне 155,5 шт., или на 4,4–9,9% выше, чем в других группах. Наименьшая она была в опытной группе 4, где в первой половине каждого светового периода цикловая температура измерения составляла 3000K, а во второй половине – 5000K; яйценоскость в этой группе была на 5,4% ниже, чем в контроле.

Анализическая тенденция отмечена и в отношении массы яиц — наибольшее значение было зафиксировано в опытной группе 3 и составило 62,3 г, что на 1,8–2,3% выше, чем в остальных группах. Минимальная масса яиц (60,9 г) зарегистрирована в опытных группах 2 и 4, на 0,5% ниже, чем в контрольной группе 1. Разница по массе яиц достоверна между группами 3 и 1, 2, 4 (P<0,001).

В связи с более высокой массой яиц в опытной группе 3 наблюдался максимальный выход яиц высшего, отборной и 1-й категории — соответственно на 1,0–1,6; 2,7–3,1 и 2,1–2,6%, а также минимальный выход яиц 2-й категории — на 4,9–8,0% меньше, чем в других группах, которые между собой отличались незначительно. По выходу яиц 3-й категории и по количеству превышающих яиц группы имели незначительные различия.

Наименьший расход корма на 1 гол/сут зарегистрирован в опытной группе 4 — на 2,3–5,1% ниже, чем в других группах. Максимальным этот показатель был в опытной группе 3 — на 29% больше, чем в контроле. В то же время самые высокие затраты корма на 10 яиц и 1 кг яичной массы наблюдался в опытной группе 3 — соответственно на 1,4–5,5 и 3,0–6,7% меньше, чем в других группах. Наиболее значимыми значениями этих показателей зафиксированы в опытной группе 4 — соответственно на 4,3 и 5,2% выше, чем в контрольной группе 1. Наибольшая конверсия корма в опытной группе 3 была непосредственно связана с максимальными показателями яйценоскости и выхода яичной массы в этой группе.

Анализ морфологических показателей яиц выявили (табл. 3), что в среднем за период опыта по абсолютной и относительной массе желтка группы 3 и 4 соответственно на 0,88–1,04 г и 1,04–1,05% превосходили контрольную группу 1 и на 0,56–0,55 г и 0,88–0,9% — опытную группу 2. Разность по абсолютной массе желтка яиц достоверна между группами 1 и 3, 4 (P<0,01).

Наиболее абсолютная масса белка была отмечена в опытной группе 3 — на 0,62–0,84 г выше, чем в других группах. По относительной массе белка лидерство контрольной группы 1 — ее превосходство над другими группами составляло 0,41–0,86%. Разность по абсолютной массе белка яиц достоверна между группами 2 и 3 (P<0,01).

По абсолютной и относительной массе скорули яиц контрольная группа 1 соответствовала на 0,88–1,9% и 0,56–0,61% превосходила показатели других групп, хотя в ней отмечалось максимальное количество поврежденных яиц (табл. 2). Разность по абсолютной массе скорули яиц достоверна между группами 1 и 3 (P<0,05).

Минимальная толщина скорули яиц наблюдалась в опытной группе 2 — она была на 1,9–2,7% меньше, чем в других группах, которые между собой отличались несущественно. Разность по толщине скорули яиц достоверна между группами 1, 4 и 2 (P<0,05).

Таблица 2

<table>
<thead>
<tr>
<th>Показатель</th>
<th>Группа</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1(к)</td>
</tr>
<tr>
<td>Сохранность поголовья, %</td>
<td>100,0</td>
</tr>
<tr>
<td>Яйценоскость (шт.) на несушку:</td>
<td></td>
</tr>
<tr>
<td>начальную</td>
<td>148,64</td>
</tr>
<tr>
<td>среднюю</td>
<td>148,64</td>
</tr>
<tr>
<td>Средняя масса яиц, г</td>
<td>61,2±0,20</td>
</tr>
<tr>
<td>Выход яиц (%) по категориям:</td>
<td></td>
</tr>
<tr>
<td>высшая</td>
<td>1,53</td>
</tr>
<tr>
<td>отборная</td>
<td>22,54</td>
</tr>
<tr>
<td>1</td>
<td>50,05</td>
</tr>
<tr>
<td>2</td>
<td>17,86</td>
</tr>
<tr>
<td>3</td>
<td>0,76</td>
</tr>
<tr>
<td>мой и насеками</td>
<td>7,26</td>
</tr>
<tr>
<td>Выход яичной массы (кг) на несушку:</td>
<td></td>
</tr>
<tr>
<td>начальную</td>
<td>8,99</td>
</tr>
<tr>
<td>среднюю</td>
<td>8,99</td>
</tr>
<tr>
<td>Расход корма:</td>
<td></td>
</tr>
<tr>
<td>на 1 гол./сут., г</td>
<td>115,5</td>
</tr>
<tr>
<td>на 10 яиц, кг</td>
<td>1,40</td>
</tr>
<tr>
<td>на 1 кг яичной массы, кг</td>
<td>2,31</td>
</tr>
</tbody>
</table>

Таблица 3

<table>
<thead>
<tr>
<th>Показатель</th>
<th>Группа</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1(к)</td>
</tr>
<tr>
<td>Масса:</td>
<td></td>
</tr>
<tr>
<td>желтка, г</td>
<td>14,16±0,19</td>
</tr>
<tr>
<td>%</td>
<td>23,51</td>
</tr>
<tr>
<td>белка, г</td>
<td>39,66±0,41</td>
</tr>
<tr>
<td>%</td>
<td>65,50</td>
</tr>
<tr>
<td>скорули, г</td>
<td>6,92±0,06</td>
</tr>
<tr>
<td>%</td>
<td>11,39</td>
</tr>
<tr>
<td>Толщина скорули, мм</td>
<td>367±2,5</td>
</tr>
<tr>
<td>Соотношение масс белка и желтка</td>
<td>2,80</td>
</tr>
</tbody>
</table>
Наиболее высокое соотношение массы белка и желтка отмечено в контрольной группе 1 — 2,80 против 2,65—2,66 в опытных группах 2—4, что в основном было связано с более низкой абсолютной массой желтка яиц в этой группе.

Результаты, представленные в таблице, также свидетельствуют, что по содержанию натрия (36,89—37,45%) в скорлупе яиц группы отличались незначительно.

Наибольшее содержание витаминов в желтке зарегистрировано в опытной группе 3. Так, указанная группа превосходила остальные по содержанию каротиноидов на 23,6—43,5%, витамина А — на 63,4—146,6%, витамина Е — на 18,5—44,5%, витамина В

Выводы

Таким образом, содержание яичных кур промышленного стада на фоне проводимого исследования 20,583 2705,09 при целевом периоде гнездования свыше 5000 Кг, а в среднем периоде — 3000 Кг, позволило повысить продуктивные качества кур по сравнению с контрольной группой при одновременном снижении затрат корма на единицу продукции.

Россельхознадзор получит новые полномочия

Глеб Мимасов, Александр Ткачев заявили о том, что готовится соответствующий законопроект, согласно которому Россельхознадзор сможет создавать рейтинг и регистрировать российские сельхозпредприятия. Министр добавил, что это даёт возможность влиять на деятельность экспортеров и своевременно присваивать информацию об условиях поставок.

Также новые полномочия Россельхознадзора включают в себя ветеринарный контроль, защиту рынка от незаконного импорта и проверку сельхозплемя на предмет целевого использования.