Энергоэффективное светодиодное освещение для сельского хозяйства.

Технический директор ООО «Техносвет групп»
Гладин Дмитрий Викторович
В настоящее время наблюдается стремительное развитие в области искусственного освещения, связанное с использованием светодиодов в качестве источников света. На замену традиционным лампам накаливания и люминесцентным лампам приходят диоды, излучающие свет различной длины волн и цветовой температуры. Обладая целым рядом преимуществ, светодиоды в первую очередь позволяют сократить энергопотребление для освещения помещений, снизив таким образом затраты предприятия на электроэнергию, повысить рентабельность производства. В сельском хозяйстве, как наиболее энергоемкой отрасли, когда на освещение помещений, например, в птицеводстве, тратится до 30% общего энергопотребления предприятия, применение светодиодных систем освещения является одной из перспективных и даёт положительный эффект в существенном снижении себестоимости продукции.

Российская компания «ТехноСВЕТ групп», начиная с 2007 года, работает на рынке оборудования для освещения сельскохозяйственных объектов, как в России, так и за рубежом. За этот период системы светоизлучающих элементов удаляют более 260 корпусов для выращивания цыплят-бройлеров, содержащих яичные кур промышленного стада, ремонтного молодняка и родительского стада на более чем 50 птицеводческих предприятиях. Светоизлучающие системы производства компании эксплуатируются на более чем 20 объектах содержания крупного рогатого скота и свиней.

В настоящее время собственные запатентованные технологии производства светодиодного оборудования позволили нам снизить его стоимость до уровня систем освещения на основе люминесцентных ламп, сохранив все преимущества освещения на основе светодиодов.

Необходимо также отметить, что компания на протяжении всей своей деятельности активно сотрудничает с Всероссийскими научно-исследовательскими и технологическими институтами пищеводства (ВНИТИПГ, г. Сергиев Посад). На базе экспериментального хозяйства института с использованием нашего оборудования постоянно проводятся научные исследования по влиянию светодиодного освещения на производственные показатели при выращивании цыплят-бройлеров, содержания яичных кур промышленного стада, ремонтного молодняка и родительского стада. Одним из результатов этой работы стало получение патента на способ использования светодиодного освещения в птицеводстве.

Сравнение систем освещения для сельскохозяйственных помещений, построенных на светодиодных технологиях, и традиционного осветительного оборудования, на лампах накаливания и люминесцентных лампах, можно провести на основе следующих параметров.

Энергосбережение

До последнего времени освещение помещений для сельскохозяйственной птицы и животных, а также для своих, связанных с обработкой пищевых продуктов, и животноводства, осуществлялось традиционными источниками света, такими как лампы накаливания и люминесцентные лампы. Теоретические исследования и более чем пятилетний опыт практической эксплуатации позволяют нам сделать вывод о том, что светодиодные системы, используемые в сельском хозяйстве, сокращают потребление электроэнергии на освещение корпусов для птицы и животных в 8-10 раз по сравнению с лампами накаливания (рис. 1) и в 1,8-2,2 раза по сравнению с люминесцентными лампами (рис. 2).

Здесь важно не только в том, что сами по себе светодиоды являются источниками света более эффективными и с пониженным энергопотреблением. Существенную роль здесь играет другие характеристики светодиодов, в частности, направленность светового потока. Для помещений с птицей и животными, как правило, необходимо создавать определенный уровень освещенности на корпуше, поилках и подстилке, а это также зависит от состояния животных и их продуктивности.

На рисунке 1 показаны светодиоды, которые имеют направленность светового потока в 360°, светодиоды с углом половинной яркости в 120°-140°, позволяют более эффективно использовать интенсивность света источника.

Кроме того, в таких помещениях освещенность не поддерживается на постоянном уровне, а изменяется в достаточно широких пределах, которые могут привести к неравномерному освещению, особенно на объектах животноводства. Поэтому важным является выбор источника света, который позволяет обеспечивать необходимый уровень освещенности для животноводства и сельскохозяйственного производства, а также учитывать специфические требования каждого вида животных и птицы.
лых. Например, при выращивании цыплят-бройлеров максимальный уровень освещенности 40-60 лк не обходим только в первые 1-3 дня, а остальные 37-40 дней он планово снижается, причем 20-25 дней остается на уровне 15-20 лк. В таком случае система управления яркостью светодиодов на основе широко-импульсной модуляции (ШИМ) позволяет практически линейно снижать потребление электроэнергии в зависимости от освещенности помещений (от 100% до 0%). В то же время способы управления яркостью ламп накаливания и люминесцентных ламп ограничены определенным уровнем напряжения и тока, при котором наступает для ламп накаливания свечение нагретой до определенной температуры вольфрамовой нити, для люминесцентных ламп — тлеющий электрический разряд через область внутри колбы с парой ртути. Кроме того, сам режим подачи импульсного напряжения или тока питания постоянного значения является более предпочтительным для светодиодов, ввиду особенностей их функционирования. Необходимо также отметить, что в помещениях для содержания птицы и животных светодиоды можно размещать на относительно небольшой высоте: от 0,4 м — при клеточном до 2,5-4 метров — при напольном содержании птиц и животных. Это позволяет эффективно использовать в светодиодах малоомощные сверхяркие светодиоды, массовое производство которых в настоящее время определяется достаточно низкой стоимостью системы светодиодного освещения, которая оккупается в течение одного года до двух лет по сравнению с лампами накаливания или люминесцентными лампами.

Электро- и пожаробезопасность
Корпуса для выращивания и содержания птицы являются помещениями с повышенной опасностью (высокая температура и влажность, наличие пыли и др.). Кроме того, исходя из требований по вращению и содержанию птицы и сельскохозяйственных животных, через определенное время помещения подвергаются интенсивной мойке водой аппаратом высокого давления с применением агрессивных моющих и дезинфицирующих средств. Например, при выращивании цыплят-бройлеров процесс полной обработки и мойки всего оборудования совершается каждые 40-50 суток. Применение светодиодов, в цепи питания которых используется напряжение промышленной сети 220 В (лампы накаливания или люминесцентные лампы), влечет за собой опасность возникновения ситуаций, когда из-за потери герметичности корпуса светодиода или повреждения кабеля питания возможно поражение электрическим током обслуживающего персонала или возможновение пожара.

В светодиодных светильниках может использоваться низкое напряжение питания, которое обеспечивает электро- и пожаробезопасность при обслуживании и эксплуатации системы освещения. Например, в светодиодной системе освещения ИСО «Хамелеон» производства «Техносвет групп» питание осуществляется безопасным напряжением 24 В.

Применение алгоритмов прерывистого освещения с целью повышения производственных показателей
Алгоритмы прерывистого освещения сельскохозяйственных помещений, разработанные в ведущих сельскохозяйственных институтах Российской Федерации, позволяют эффективно повысить производственные показатели при выращивании цыплят-бройлеров, содержании промышленного стада кур-несушек, ремонтного молодняка, разводимого под охлаждение, а также животных. В частности, в последние годы при производстве куриной птицы интерес к режимам прерывистого освещения заметно возрос. Это вызвано тем, что, в отличие от режимов постоянного освещения прерывистое позволяет не только увеличивать яйценоскость, массу яиц, прочность скорлупы, продолжительность использования кур-несушек, но и одновременно снижать затраты корма, отход поголовья, расход электроэнергии. Реализация режимов прерывистого освещения на лампах накаливания влечет за собой использование малоэффективных, с точки зрения потребления электроэнергии, технологий, приводящих к сокращению и так небольшого срока службы таких ламп. Люминесцентные лампы без применения специальных элементов, так называемых «бластов», не позволяют регулировать уровень освещенности в помещениях ниже, чем 30-50% от максимальной. Стоимость светодиодов с возможностью такой регулировки возрастает в несколько раз и становится сравнимой со стоимостью светодиодного светильника, потребление электроэнергии которого в 2-2,5 раза меньше, а срок службы больше в 5-8 раз. Применение светодиодных светильников с использованием широтно-импульсной модуляции (ШИМ) позволяет реализовывать режимы прерывистого освещения максимально эффективно с точки зрения энергопотребления, при низкой стоимости оборудования и высокой надежности. Алгоритмы прерывистого освещения сельскохозяйственных помещений, разработанные в ведущих сельскохозяйственных институтах.
Российской Федерации, позволяют эффективно повысить производственные показатели при выращивании цыплят-бройлеров, содержании промышленного стада кур-несушек, ремонтного молодняка, родительского стада, а также животных. В частности, в последние годы при производстве курятят интерес к режимам прерывистого освещения заметно возрос. Это вызвано тем, что, в отличие от режимов постоянного освещения, прерывистое освещение позволяет не только увеличивать яйценоскость, массу яиц, прочность скорлупы, продолжительность использования кур-несушек, но и одновременно снижать затраты корректи, отход поголовья, расход электроэнергии. Реализация режимов прерывистого освещения на птицах накапливается влечет за собой использование малоэффективных, с точки зрения потребления электроэнергии, технологий, приводящих к значительной экономии электроэнергии, температурной статистики, которая, в свою очередь, позволяет реализовать режимы прерывистого освещения более эффективно с точки зрения электропотребления, при низкой стоимости оборудования и высокой надежности.

Срок службы светильников
Экономическая привлекательность любого оборудования определяется не только увеличением яйценоскостью, массой яиц, прочностью скорлупы, продолжительностью использования кур-несушек, но и одновременно снижением затрат на электроэнергию. Реализация режимов прерывистого освещения на птицах накапливается влечет за собой использование малоэффективных, с точки зрения потребления электроэнергии, технологий, приводящих к значительной экономии электроэнергии, температурной статистики, которая, в свою очередь, позволяет реализовать режимы прерывистого освещения более эффективно с точки зрения электропотребления, при низкой стоимости оборудования и высокой надежности.

Применение светильников со светодиодами различной длины волны (цвета) и цветовой температуры
В исследованиях, проведенных в ГНУ ВИНИТИ Росагроэкологии, по изучению сравнительной эффективности светодиодных ламп, потребление электроэнергии которых в 2,2-2,5 раза меньше, а срок службы больше в 5-8 раз. Применение светодиодных светильников с использованием широкополосной модуляции (ШИМ) позволяет реализовать режимы прерывистого освещения, эффективно эффективно с точки зрения энергопотребления, при низкой стоимости оборудования и высокой надежности.

Таким образом, на основании вышеизложенного можно сделать следующие выводы:
- в настоящее время светодиодное освещение активно применяется в сельском хозяйстве России, позволяя эффективно снижать затраты на электроэнергию, более эффективно использовать энергетический ресурс предприятий и повышать за счет этого рентабельность производства;
- использование пониженного напряжения в целях питания светодиодных светильников позволяет повысить электро- и пожаробезопасность помещений, что актуально для специфических условий эксплуатации в сельском хозяйстве;
- особенности светодиодных светильников и систем освещения на их основе позволяют применять технологии выращивания и содержания птицы и животных, которые обеспечивают существенное повышение производственных показателей как в птицеводстве, так и в других областях сельского хозяйства.
Компания «Техносвет групп» осуществляет поставки светодиодного оборудования для сельхозпредприятий как в России, так и за рубежом, сотрудничая с крупными мировыми поставщиками оборудования для птицеводческих хозяйств. В настоящее время в Украине на предприятии «Племптицекомбинат «Запорожский» установлены дневащать систем освещения ИСО «Хамелоон» для корпусов 18×120 метров с ро- дительским стадом. Шесть корпусов из дневащади оборудованы светодиодными системами в начале февраля 2012 года. Результаты эксплуатации показывают, что 134 светодиодных светильни- ка СН1050-20×120-T мощностью 20 Вт полностью заменяют лампы накаливания мощностью 100 Вт в количестве 240 шт. на один корпус и обеспечивают необходимый уровень освещенности 90-100 лк.

Энергопотребление при этом сни- жается в 6,5 раза (24 кВт/час при использовании ламп накаливания и 2,7 кВт/час — на светодиодном освещении).

В настоящее время производство систем освещения на основе светодиодов для сельского хозяйства нашего компании открыва- ет и в Украине. Оборудование, ко- торое будет производиться компанией «Техносвет групп Украина» в г. Миргороде, не отличается по качеству от российского производства. Основным преимуществом станет привлекательная для украинского рынка стоимость оборудова- ния, которая не будет включать расходы на перевозку, таможенные пошлины и другие затраты, присущие импорту оборудова- ния из другой страны.

Наша компания приглашает к сотрудничеству предприятий, занятые в сфере животноводства, в особенности птицеводческие хозяйства. Использование светодиодного освещения нашего производ- ства позволит Вам существенно снизить затраты на электроэнергию, стоимость которой по- стоянно растет, сократить в несколько раз расходы на обслужи- вание систем освещения, исключить необходимость замены источ- ников света и их утилизации, повысить производственные показа- тели за счет эффективного при- менения режимов прерывистого освещения, обеспечить высокую и надежность в корпусах для выращивания и содержания животных с птицы. Окупаемость систем светодиодного освещения только за счет снижения энергопо-