300EKTIBHOE CTELBUTYCK TITULEBOACTBO U TITULEB

ДСМ Нутришнл Продактс 129226, Москва, ул. Докукина, 16, стр. 1 +7 (495) 980 60 60 dsm.com/anh

У Читайте нас в Twitter @DSMFeedTweet

MaxiChick™ – специальное решение компании ДСМ Нутришнл Продактс для улучшения показателей родительских стад.

Преимущества MaxiChick™:

- Отличная оплодотворяемость
- Больше инкубационного яйца
- Качественная скорлупа
- Высокий процент выводимости
- Превосходные антиоксидантные свойства
- Высокая сохранность несушки и цыплят

Гладин Д.В., кандидат с.-х. наук,

технический директор ООО «ТЕХНОСВЕТ ГРУПП»;

ИЗМЕРЕНИЕ ОСНОВНЫХ СВЕТОТЕХНИЧЕСКИХ ХАРАКТЕРИСТИК

ИСТОЧНИКОВ СВЕТА В ПТИЧНИКЕ

e-mail - info@ntp-ts.ru; тел.+7 921 255 61 51 **Суровегин С.В.** генеральный директор ООО «ТЕХНОСВЕТ ГРУПП»; e-mail - info@ntp-ts.ru; тел.+7 921 723 38 00

Ключевые слова. Источники света, светодиод, фотодиод, измерительные приборы, люксметр, пульсометр, спектрофотометр цветовая температура, индекс цветопередачи.

Свет является одним из важнейших элементов окружающей среды, оказывающих влияние на жизнеспособность и физиологическое состояние птицы [1]. Он универсальный синхронизатор большинства биологических ритмов организма и используется в птицеводстве как фактор, регулирующий половое развитие птицы и стимулирующий ее рост и продуктивность [2, 3].

Базисным источником света для птицы, разводимой в безоконных помещениях, является искусственное освещение, следовательно, источник, его спектр, интенсивность, а также режим освещения являются решающими факторами света в интенсивном птицеводстве [4, 5, 6, 7].

Световой микроклимат в птичниках должен находиться под постоянным контролем технических, зоотехнических и ветеринарных служб птицеводческого предприятия, так как его нарушение может приводить к негативным последствиям для здоровья птицы и снижать эффективность птицеводства [8, 9, 10].

«Измеряй все поддающееся измерению, а что не поддаётся — сделай измеряемым» — этот афоризм, приписываемый Галилею, в том числе говорит, что все основные светотехнические характеристики источников света в птичнике могут быть измерены. Для любого из них существуют требования, соблюдение значений которых обязательно в птичнике, либо носит рекомендательный характер [11].

С целью определения способов и инструментов измерения светотехнических характеристик

источников света, входящих в систему освещения птичника, нами проведено настоящее исследование.

Основными светотехническими характеристиками, измерение которых возможно непосредственно в птичнике или на птицеводческом предприятии, являются:

- освещенность, уровень которой измеряется в люксах [12];
- спектральный состав излучения источника света, либо в графическом виде распределения мощности излучения по частотам, либо в понятии цветовой температуры для белого света [13];
- качество цветопередачи источников света (индекс цветопередачи) [14];
- пульсации освещенности, через коэффициент и частоту пульсаций [15].

Распределение уровня освещенности в различных точках птичника либо клетки дает понятие равномерности освещения и показывает, насколько различен световой микроклимат для птицы в разных частях птичника или клетки.

Прибор, с помощью которого измеряется освещенность, называется люксметр. Он относится к классу фотометров. Следует помнить, что все промышленные люксметры имеют характеристику чувствительности, максимально приближенную к чувствительности человеческого зрения (рис. 1). Характеристика чувствительности зрения птицы отличается от человеческого и имеет три максимума (рис. 2).

Однако во всех нормативных документах по птицеводству необходимые уровни освещенности приведены исходя из характеристики чувствительности человеческого глаза и люксметра.

Все приборы, используемые для измерения показателей светового микроклимата в птичнике,

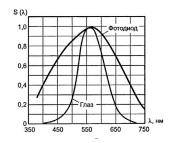


Рис. 1. Характеристика чувствительности глаза человека и фотодиода в люксметре

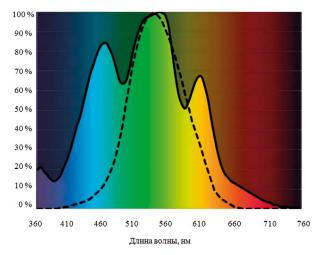


Рис. 2 Зависимость чувствительности органов зрения человека (пунктирная линия) и птицы (сплошная линия) в диапазоне видимого излучения.

должны быть поверены и калиброваны. Срок действия поверки и калибровки приборов, как правило, составляет один год. Необходимо помнить, что не все измерительные приборы могут быть откалиброваны. Например, для люксметра TESTO 540 (рис. 3 (слева)), в отличие от отечественного люксметра TKA-ПКМ (рис. 3. (справа)), не предусмотрена калибровка. Порядок работы с люксметрами, их основные характеристики, периодичность и порядок поверки определены в [16].

Рис. 3. Внешний вид люксметра TESTO 540 (слева) и ТКА-ПКМ (справа)

В настоящее время промышленность предлагает большой ассортимент различных моделей люксметров в широком диапазоне цены и качества. На рис. 3 (слева) у люксметра TESTO 540 сверху находится светоприемник, который необходимо располагать перпендикулярно направлению на источник света. Особенностью данной модели является объединение датчика (светоприемника) и самого люксметра в одном корпусе, что при измерениях в птичнике, а особенно в клетке с птицей, не всегда удобно. Рекомендуется выбирать модели с вынесенным на проводе датчиком. На рис. 3 (справа) представлен отечественный люксметр ТКА-ПКМ, у которого выносной датчик на проводе может быть размещен в труднодоступные места клетки для птицы, при этом сам прибор с дисплеем находится в руках человека, проводящего измерения.

Особенностью ТКА-ПКМ является и возможность измерять коэффициент пульсаций освещенности. Однако, чтобы измерить частотные характеристики пульсаций, необходимы другие приборы [17]. На рис. 4 представлен люксметр RADEX LUPIN, совместно с программным обеспечением, позволяющий анализировать на компьютере коэффициент и частоту пульсаций освещенности.

Спектральный состав излучения источника света, а также качество цветопередачи можно измерять

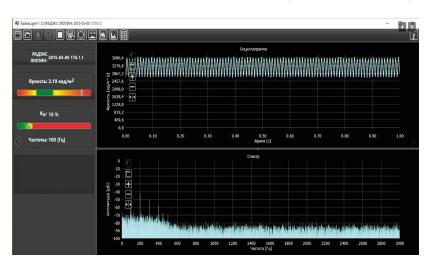


Рис. 4. Люксметр, пульсметр RADEX LUPIN и интерфейс программного обеспечения RADEXLIGHT-1.12

специальными приборами. Как правило, такие измерители более дорогие и требуют для наглядного представления информации компьютер, ноутбук или планшет. На рис. 5 представлен прибор ТКА-СПЕКТР (ФАР) и интерфейс программы с измеряемыми параметрами излучения [18].

При измерении уровня освещенности и других характеристик излучения источников света в птичнике следует соблюдать следующие правила:

- 1) использовать только исправные и поверенные измерительные приборы;
- 2) перед измерением внимательно прочесть инструкцию по применению прибора, установить необходимое программное обеспечение;
- 3) внимательно изучить и уяснить уровни освещенности и места измерений, указанные в используемых нормативных документах;
- 4) светоприемник (датчик) располагать перпендикулярно направлению на источник света. Если источников света множество (например, птичник напольного содержания) датчик необходимо располагать параллельно плоскости размещения источников света;
- 5) замеры необходимо проводить в нескольких точках предполагаемой одинаковой освещенности (например, одинаковый ярус различных клеточных батарей или уровень подстилки при напольном содержании). За измеренное значение освещенности в этом случае считать среднеарифметическое;
- 6) при измерении освещенности в клеточных батареях и размещении источников света в проходах между батареями замеры проводить на каждом ярусе в нескольких местах;
- 7) при проведении измерений следить за тем, чтобы между светоприемником прибора и любым из ближайших источников света не находилось лишних непрозрачных препятствий, включая самого измеряющего;

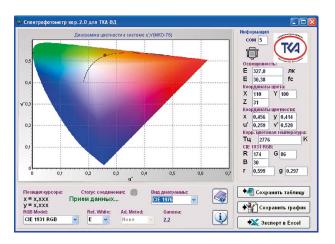


Рис. 5. Спектрофотометр ТКА-СПЕКТР (ФАР) и интерфейс программы измерения параметров цветности для приборов ТКА

- 8) уметь проводить обработку результатов измерений, иметь навык использования полученных данных при вводе программ прерывистого освещения в птичнике;
- 9) вести учет полученных данных по уровням освещенности в контрольных точках птичника для прогнозирования дальнейшего использования источников света и сроков их замены.

Таким образом, использование современных приборов измерения характеристик освещения позволяет контролировать световой микроклимат в птичнике и влиять на зоотехнические показатели птицы. Знание основ обработки результатов измерений дает возможность использовать эти данные при составлении режимов прерывистого освещения, а также прогнозировать срок службы осветительного оборудования.

ЛИТЕРАТУРА

- Parvin, R. Light emitting diode (LED) as a source of monochromatic light: a novel lighting approach for behavior, physiology and welfare of poultry / R. Parvin, M.M.H. Mushtaq, M.J. Kim, H.C. Choi // World's Poultry Sci. J. – 2014. – Vol. 70(3). – P. 557–562.
- 2. Кавтарашвили, А.Ш. К вопросу повышения эффективности яичного птицеводства /А.Ш. Кавтарашвили, С.П. Риджал, Г.А. Кирдяшкина // Птица и птицепродукты. 2003. № 2. С. 15–19.
- 3. Lewis, P.D. Poultry and coloured light / P.D. Lewis, T.R. Morris // World's Poultry Sci. J. 2000. Vol. 56. P. 189–207.
- Andrews, D.K. A comparison of energy efficient house lighting source and photoperiods / D.K. Andrews, N.G. Zimmerman // Poultry Sci. – 1990. – Vol. 69. – P. 1471–1479.
- Borille R. The use of light-emitting diodes (LED) in commercial layer production / R. Borille, R.G. Garcia, A.F.B Royer // Brazilian Journal Poultry Sci. – 2013. – Vol. 15. – P. 135–140.
- Journal Poultry Sci. 2013. Vol. 15. P. 135–140.

 6. Morrill, W.B.B. The effect of RGB monochromatic and polychromatic LED lighting on growth performance, behavior, and development of broilers / W.B.B. Morrill, J.M.C. Barnabé, T.P.N. Da Silva et al. // Proceedings of Society of Photo-Optical Instrumentation Engineers. San Francisco, CA, USA. Wellington. 2014.
- Parvin, R. Light emitting diode (LED) as a source of monochromatic light: a novel lighting approach for behavior, physiology and welfare of poultry / R. Parvin, M.M.H. Mushtaq, M.J. Kim, H.C. Choi // World's Poultry Sci. J. – 2014. – Vol. 70(3). – P. 557–562.
- 8. Адаптивная ресурсосберегающая технология производства яиц: монография / В.И. Фисинин, А.Ш. Кавтарашвили, И.А. Егоров, В.С. ЛукашенкоВ.С. Буяров, О.Н. Сахно

- и др.; под общ. ред. В.И. Фисинина и А.Ш. Кавтарашвили. Сергиев Посад, 2016. 351 с.
- 9. Гладин Д.В. Повышение равномерности освещения клеточных батарей для кур-несушек / Д.В. Гладин, А.Ш. Кавтарашвили, Е.Н. Новоторов, В.А. Гусев // Птицеводство. 2018. № 7. С. 17–21.
- 10. Гладин Д.В. Светодиодное локальное освещение при производстве яиц кур: дис. ... канд. с.-х. наук: 06.02.10 / Гладин Дмитрий Викторович. – Сергиев Посад, 2017. – 178 с.
- ПОСТ Р 55839-2013. Источники света и приборы осветительные. Методы светотехнических измерений и формат представления данных М. Стандартинформ, 2014. 28 с.
 ГОСТ Р 55703-2013. Источники света электрические. Ме-
- ГОСТ Р 55703-2013. Источники света электрические. Методы измерений спектральных и цветовых характеристик М. Стандартинформ, 2014. 109 с.
- 13.ГОСТ Р 8.827-2013 Государственная система обеспечения единства измерений (ГСИ). Метод измерения и определения индекса цветопередачи источников излучения М. Стандартинформ, 2015. 27 с.
- М. Стандартинформ, 2015. 27 с. 14. ГОСТ 33393-2015 Здания и сооружения. Методы измерения коэффициента пульсации освещенности — М. Стандартинформ, 2016. — 12 с.
- 15. ГОСТ Р 8.850-2013 Государственная система обеспечения единства измерений (ГСИ). Характеристики люксметров и яркомеров. Общие положения М. Стандартинформ, 2015. 28 с.

 16. Кузьмин В. Приборы для измерения оптических параме-
- 16.Кузьмин В. Приборы для измерения оптических параметров и характеристик светодиодов / В. Кузьмин, А. Антонов, О. Круглов // Полупроводниковая светотехника. 2010. № 3. С. 26–31.
- 2010. № 3. С. 26–31. 17.Томский, К. Российская измерительная техника. Приборная серия ТКА / К. Томский, В. Кузьмин, Ю. Барбар // Компоненты и технологии. – 2008. – № 10. – С. 167–172.

СВЕТОДИОДНЫЕ СИСТЕМЫ ОСВЕЩЕНИЯ ДЛЯ ПТИЦЕВОДСТВА

новейшие технологии на основе мировых и отечественных исследований

- √ максимальная энергоэффективность
- √ специально подобранный спектр излучения
- √ оптимальная равномерность освещения при любом содержании птицы
- √ отсутствие вредного влияния пульсаций светового потока светильников
- √ увеличенный срок службы
- √ безопасность эксплуатации оборудования напряжением 24-48 В
- √ оптимальное сочетание «цена-качество»

С 2009 года

В эксплуатации более 1 900 000 светильников на 4 400 птичниках, Наши клиенты более 296 предприятий

МЫ ГОТОВЫ ПОВЫСИТЬ ЭФФЕКТИВНОСТЬ ВАШЕГО ПРЕДПРИЯТИЯ

162600, Россия, Вологодская обл., г. Череповец, пр. Победы, д. 85-Д, оф. 3

телефон: 8 (8202) 490-111 e-mail: info@ntp-ts.ru

сайт: www.ntp-ts.ru

Создавая полезное....